Firms & Development: A Progress Report

Eric Verhoogen, Columbia University

Nobel Symposium in Economic Sciences, STIAS

March 13, 2024

 Once upon a time, growth was at the core of development economics.

- Once upon a time, growth was at the core of development economics.
 - In the early days of the field, a central problem was how to promote industrialization (Rosenstein-Rodan, 1943; Prebisch, 1950; Nurkse, 1953; Myrdal, 1957; Hirschman, 1958; Rostow, 1960).

- Once upon a time, growth was at the core of development economics.
 - In the early days of the field, a central problem was how to promote industrialization (Rosenstein-Rodan, 1943; Prebisch, 1950; Nurkse, 1953; Myrdal, 1957; Hirschman, 1958; Rostow, 1960).
- Early ideas were the basis for many theories of endogenous growth in 1980s/90s (Krugman, 1987; Murphy, Shleifer and Vishny, 1989; Rodriguez-Clare, 1996).

- Once upon a time, growth was at the core of development economics.
 - In the early days of the field, a central problem was how to promote industrialization (Rosenstein-Rodan, 1943; Prebisch, 1950; Nurkse, 1953; Myrdal, 1957; Hirschman, 1958; Rostow, 1960).
- Early ideas were the basis for many theories of endogenous growth in 1980s/90s (Krugman, 1987; Murphy, Shleifer and Vishny, 1989; Rodriguez-Clare, 1996).
- But by the time I was doing my PhD, circa 2000, growth had largely disappeared from PhD-course syllabi in development.

 Several reasons, but one is the "credibility revolution" in applied micro.

> Attention to causal identification.

- > Attention to causal identification.
- Development of quasi-experimental and experimental methods.

- > Attention to causal identification.
- Development of quasi-experimental and experimental methods.
- Suspicion of grand narratives.

- Attention to causal identification.
- Development of quasi-experimental and experimental methods.
- Suspicion of grand narratives.
- Empirical work on growth was largely limited to cross-country growth regressions (Barro, 1991; Hall and Jones, 1999).
 - ▶ Hard to defend causal interpretations.

- Attention to causal identification.
- Development of quasi-experimental and experimental methods.
- Suspicion of grand narratives.
- Empirical work on growth was largely limited to cross-country growth regressions (Barro, 1991; Hall and Jones, 1999).
 - ▶ Hard to defend causal interpretations.
- Focus shifted to questions that could be convincingly answered in micro-data.
 - Has generated lots of progress, as this conference is attesting.

- Attention to causal identification.
- Development of quasi-experimental and experimental methods.
- Suspicion of grand narratives.
- Empirical work on growth was largely limited to cross-country growth regressions (Barro, 1991; Hall and Jones, 1999).
 - ▶ Hard to defend causal interpretations.
- Focus shifted to questions that could be convincingly answered in micro-data.
 - Has generated lots of progress, as this conference is attesting.
- But to sustainably raise living standards of the poor, there's no avoiding the big question of what drives growth.

Research in "Firms & Development" is trying to bring these two important streams together.

- Research in "Firms & Development" is trying to bring these two important streams together.
 - Applied micro methods (and sensibility).

 Research in "Firms & Development" is trying to bring these two important streams together.

- Applied micro methods (and sensibility).
- Focus on drivers of growth.
 - In particular, determinants of firm performance and innovative behavior, understood broadly to include catch-up ("upgrading").

Research in "Firms & Development" is trying to bring these two important streams together.

- Applied micro methods (and sensibility).
- Focus on drivers of growth.
 - In particular, determinants of firm performance and innovative behavior, understood broadly to include catch-up ("upgrading").

▶ Happily, the area seems to be cohering as a subfield.

Research in "Firms & Development" is trying to bring these two important streams together.

- Applied micro methods (and sensibility).
- ► Focus on drivers of growth.
 - In particular, determinants of firm performance and innovative behavior, understood broadly to include catch-up ("upgrading").
- ▶ Happily, the area seems to be cohering as a subfield.
 - Key public-good providers:
 - Robin Burgess & Chang Hsieh's conference series on "industrial development" (with inspiration from John Sutton).
 - International Growth Centre conferences & funding.
 - ▶ PEDL, led by Chris Woodruff.

Research in "Firms & Development" is trying to bring these two important streams together.

- Applied micro methods (and sensibility).
- Focus on drivers of growth.
 - In particular, determinants of firm performance and innovative behavior, understood broadly to include catch-up ("upgrading").
- ▶ Happily, the area seems to be cohering as a subfield.
 - Key public-good providers:
 - Robin Burgess & Chang Hsieh's conference series on "industrial development" (with inspiration from John Sutton).
 - International Growth Centre conferences & funding.
 - ▶ PEDL, led by Chris Woodruff.
 - Area has also benefitted from:
 - Growing availability of micro-data on firms.
 - Policy-maker interest in innovation/industrial policy.
 - Growing willingness of governments, NGOs, funders to support experiments at firm level.

Today, I'll give a sort of progress report, highlighting some areas where progress has been made but we still need more work.

► Today, I'll give a sort of progress report, highlighting some areas where progress has been made but we still need more work.

► Roadmap:

- 1. Knowledge spillovers.
- 2. "Demand-pull" effects.
- 3. Contractual frictions in upgrading.
- 4. Management practices.

Today, I'll give a sort of progress report, highlighting some areas where progress has been made but we still need more work.

► Roadmap:

- 1. Knowledge spillovers.
- 2. "Demand-pull" effects.
- 3. Contractual frictions in upgrading.
- 4. Management practices.
- Idiosyncratic selection of studies that speak to microfoundations of growth and meet high ("applied micro") empirical standards.

Today, I'll give a sort of progress report, highlighting some areas where progress has been made but we still need more work.

► Roadmap:

- 1. Knowledge spillovers.
- 2. "Demand-pull" effects.
- 3. Contractual frictions in upgrading.
- 4. Management practices.
- Idiosyncratic selection of studies that speak to microfoundations of growth and meet high ("applied micro") empirical standards.
- ▶ I'll draw on a recent JEL review (Verhoogen, 2023).

- Learning externalities play a key role in lots of influential thinking about growth.
 - ▶ Romer (1986), Lucas (1988).
 - ► Hausmann and Rodrik (2003).

- Learning externalities play a key role in lots of influential thinking about growth.
 - ▶ Romer (1986), Lucas (1988).
 - ► Hausmann and Rodrik (2003).
- They are also the basis for many arguments for industrial policy (Rodrik, 2004; Stiglitz and Greenwald, 2014).

- Learning externalities play a key role in lots of influential thinking about growth.
 - ▶ Romer (1986), Lucas (1988).
 - ► Hausmann and Rodrik (2003).
- They are also the basis for many arguments for industrial policy (Rodrik, 2004; Stiglitz and Greenwald, 2014).
- Social effects are challenging to identify (Manski, 1993).

- Learning externalities play a key role in lots of influential thinking about growth.
 - ▶ Romer (1986), Lucas (1988).
 - ► Hausmann and Rodrik (2003).
- They are also the basis for many arguments for industrial policy (Rodrik, 2004; Stiglitz and Greenwald, 2014).
- Social effects are challenging to identify (Manski, 1993).
- ▶ Much of the best work on social learning has been in agriculture.

- Learning externalities play a key role in lots of influential thinking about growth.
 - Romer (1986), Lucas (1988).
 - ► Hausmann and Rodrik (2003).
- They are also the basis for many arguments for industrial policy (Rodrik, 2004; Stiglitz and Greenwald, 2014).
- Social effects are challenging to identify (Manski, 1993).
- ▶ Much of the best work on social learning has been in agriculture.
 - Conley and Udry (2010) on pineapples:
 - Good news from information neighbors increases adoption, conditional on choices of geographic neighbors.

- Learning externalities play a key role in lots of influential thinking about growth.
 - Romer (1986), Lucas (1988).
 - ► Hausmann and Rodrik (2003).
- They are also the basis for many arguments for industrial policy (Rodrik, 2004; Stiglitz and Greenwald, 2014).
- Social effects are challenging to identify (Manski, 1993).
- ▶ Much of the best work on social learning has been in agriculture.
 - Conley and Udry (2010) on pineapples:
 - Good news from information neighbors increases adoption, conditional on choices of geographic neighbors.
- Related work: Duflo and Saez (2003), Bandiera and Rasul (2006), Banerjee et al. (2013), BenYishay and Mobarak (2019), Beaman et al. (2021).

 Cai and Szeidl (2018): information passes between firms in an experimentally manipulated network.

 Cai and Szeidl (2018): information passes between firms in an experimentally manipulated network.

> store e e e midline endline endline growth of control firms additional growth of treatment firms

Figure 1 Effect of meetings on firm revenue

- Randomly assigned 2,820 Chinese managers into groups that met monthly for one year (or no-meetings control).
- Large effects on revenues, profits, employment, assets, utility cost (including electricity), TFP.
- Related work: Fafchamps and Quinn (2018).

Source: Cai & Szeidl, VoxDev 2017.

- In cross-cutting experiment, randomly seeded two types of information:
 - Grant opportunity for firms (rival).
 - Savings opportunity for managers (non-rival).
- Diffusion was lower for rival opportunity when there were more direct competitors in group.
- Related work: Hardy and McCasland (2021).

Figure 2 Information diffusion rate

Source: Cai & Szeidl, VoxDev 2017.

- Do we see similar effects for production technologies?
- Do the sales/profits effects reflect flows of knowledge or other benefits of networking?
- Are the spillovers large enough to justify public subsidies?

▶ Growth literature has tended to emphasize supply-side factors.

▶ Growth literature has tended to emphasize supply-side factors.

► Tradition of modelling single economies in isolation.

▶ Growth literature has tended to emphasize supply-side factors.

- Tradition of modelling single economies in isolation.
- Non-homotheticities in demand are hard to model tractably (but see Matsuyama (2019), Comin et al. (2021)).

▶ Growth literature has tended to emphasize supply-side factors.

- Tradition of modelling single economies in isolation.
- Non-homotheticities in demand are hard to model tractably (but see Matsuyama (2019), Comin et al. (2021)).
- Studies that emphasize export orientation tend to focus on scale and productivity effects, rather than nature of demand.
Demand-Pull Effects

▶ Growth literature has tended to emphasize supply-side factors.

- Tradition of modelling single economies in isolation.
- Non-homotheticities in demand are hard to model tractably (but see Matsuyama (2019), Comin et al. (2021)).
- Studies that emphasize export orientation tend to focus on scale and productivity effects, rather than nature of demand.
- But evidence has accumulated that the nature of demand matters for firm behavior.
 - ▶ Demanding customers can "pull" the upgrading process.
 - In the spirit of trade literature at higher level of aggregation (Burenstam Linder, 1961; Schott, 2004; Hummels and Klenow, 2005; Hallak, 2006).

 Verhoogen (2008): destination-market income drives quality composition within firms.

Exports, High-quality Models as Percentage of VW Output Notes: Output measured in physical units. Omitted model from upper curve is the Original Beetle. Data from bulletins of the Asociación Mexicana de la Industria Automotriz (Mexican Automobile Industry Association).

- On average in manufacturing, ISO 9000, wages respond to increase in exports.
- Subsequent work suggests effects are driven by income at destination, not export volume per se (Brambilla et al., 2012; Bastos et al., 2018).
- For convenience, I modeled upgrading as a shift between (known) quality levels.

• Atkin, Khandelwal and Osman (2017): quality upgrading \rightarrow learning.

- Randomized initial export orders among Egyptian rug producers.
- Tracked detailed quality indicators.
- Had producer weave identical rugs under laboratory conditions.

(1) (2) Control mean ITT T Corners 2.98 1.11*** Waviness 2.99 1.12 0.0 Weight 3.08 1.07*** 1.4 Touch 3.12 0.045** 0.011*** Touch 3.12 0.06*** 0.05**** Warp thread tightness 0.05 0.05***** 0.10***** Operation 0.10****** 0.05**** 0.10****** Packedness 3.05 0.83***** 1.4 Operation 0.05****** 0.00***** 0.00***** Operation 0.05******** 1.6 0.11******* Operation 0.10*********** 0.00*********** 0.00**********************************	(2) OT 70*** 11) 38*** 10)
Pand & Quality metrics Corners 2.98 1.11*** Warviness 2.99 0.129 0.0 Wayiness 2.99 0.129 0.0 Weight 3.08 0.011) 0.0 Touch 3.12 0.0695 0.0 Packedness 3.11 0.0695 0.0 Warp thread tightness 2.05 0.83*** 1.4 0.100 0. 0.87*** 1.6 0.110 0.0 0.7**** 1.6 0.111 0.0 0.7***** 1.6 0.112 0.0 0.7****** 1.6 0.111 0.0 0.7*********** 1.0 Partmead tightness 2.08 0.87*********************** 1.0 Design accuracy 3.17 0.79************************************	70*** 11) 38*** 10)
	70*** .11) 58*** 10)
$ \begin{array}{c} 0.12 & 0.0 \\ 0.12 & 0.0 \\ 0.12 & 0.0 \\ 0.10 & 0.0$.11) 58*** 10)
Waviness 2.9 1.10 ^{**} 1.6 (0.12) <td>58*** 10)</td>	58*** 10)
$ \begin{array}{c} (0.12) & (0.0) \\ (0.11) & (0.0) $	10)
Weight 3.08 1.0^{7+*} 1.4 0.11 0.0 0.01 0.0 Touch 3.12 0.40 ^{***} 0.6 0.40 ^{***} 0.6 0.00 ^{***} 0.6 Packedness 3.11 0.89 ^{***} 1.5 Warp thread tightness 0.60 ^{***} 0.6 0.11 0.11 0.0 0.71 1.4 0.5 0.71 1.6 0.71 1.6 Design accuracy 3.17 0.79 ^{***} 1.6 0.10 0.0 Warp thread packedness 3.05 1.07 ^{***} 1.6 1.07 ^{***} 1.6	20222
$ \begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	3 3
Touch 3.12 0.40*** 0.68 Packedness 0.08** 1.5 0.08** 1.6 Warp thread tightness 0.0 0.3*** 1.4 0.10** 0.6 Warp thread tightness 0.5 0.83*** 1.4 0.10** 0.6 0.7 1.4 Firmness 2.98 0.57** 1.6 0.10*** 0.10*** 0.10*** 0.10**** 0.10**** 0.10**** 0.10****** 0.10***** 0.10****** 0.10****** 0.10******* 0.10************ 0.10***********************************	11)
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	36***
Packedness 3.11 0.89*** 1.51 Warp thread tightness 3.05 0.83*** 1.4 0.101 0.0 0.101 0.0 Firmness 2.98 0.57*** 1.6 Design accuracy 3.17 0.71**** 0.101 Warp thread tackedness 3.05 1.07**** 1.6	.07)
0.11 0.0 Warp thread tightness 3.05 0.83"** 0.10 0.0 0.0 Firmness 2.98 0.87"** 1.6 0.11 0.0 0.0 0.0 Design accuracy 3.17 0.79"** 1.4 0.10 0.0 1.0 0.0	59***
Warp thread tightness 3.05 0.83*** 1.4 (0.10) (0.10) (0.10) (0.10) (0.10) (0.11) (0.0) (0.11) (0.0) (0.10) (0.	(12)
(0.10) (0. Firmness 2.98 0.87*** 1.6 (0.11) (0. Design accuracy 3.17 0.79*** 1.4 (0.10) (0.10) Warn thread nackedness 3.05 1.07*** 1.6	19***
Firmness 2.98 0.87*** 1.6 0.11 (0.11) (0.10) (0.11) (0.11) Design accuracy 3.17 0.79*** 1.4 (0.10) (0.10) Waro thread packedness 3.05 1.07*** 1.6 (0.10) (0.10)	(12)
(0.11) (0. Design accuracy 3.17 0.79 ^{+**} 1.4 (0.10) (0. Waro thread packedness 3.05 1.07 ^{+**} 1.6	30***
Design accuracy 3.17 0.79*** 1.4 (0.10) (0. Warp thread packedness 3.05 1.07*** 1.6	(12)
(0.10) (0. Warp thread packedness 3.05 1.07*** 1.6	41***
Warp thread packedness 3.05 1.07*** 1.6	(12)
	35***
(0.11) (0.	11)
Inputs 3.07 0.89*** 1.6	32***
(0.10) (0.	(12)
Loom 2.02 0.03 0.0)5
(0.02) (0.	.04)
R-squared 0.44 0.6	30
Observations 6,885 6,8	385
Panel B: Stacked quality metrics	
Stacked quality metrics 2.96 0.79*** 1.3	35***
(0.09) (0.	.08)
R-squared 0.39 0.5	54
Observations 6,885 6,8	385

TABLE VIII IMPACT OF EXPORTING ON QUALITY LEVELS

	Master artisan			Professor		
	Control mean	(1) ITT	(2) TOT	Control mean	(3) ITT	(4) TOT
Panel A: Quality metrics						
Corners	3.23	0.72^{***}	1.05^{***}	3.31	0.29^{**}	0.43**
		(0.14)	(0.17)		(0.13)	(0.18)
Waviness	3.17	0.55^{***}	0.80***	3.31	0.25^{**}	0.36**
		(0.14)	(0.18)		(0.12)	(0.16)
Weight	3.60	0.62^{***}	0.91***	3.64	0.58^{***}	0.86***
		(0.13)	(0.16)		(0.17)	(0.25)
Packedness	3.30	0.77^{***}	1.14^{***}	3.28	0.28^{**}	0.42^{***}
		(0.13)	(0.15)		(0.11)	(0.15)
Touch	3.29	0.52^{***}	0.76***	3.27	0.36***	0.52***
		(0.11)	(0.14)		(0.12)	(0.16)
Warp thread tightness	3.00	0.51^{***}	0.74^{***}	3.30	0.25^{**}	0.36**
		(0.09)	(0.11)		(0.12)	(0.16)
Firmness	3.21	0.71^{***}	1.04^{***}	3.23	0.29^{**}	0.43***
		(0.14)	(0.17)		(0.12)	(0.16)
Design accuracy	3.65	0.53^{***}	0.77***	3.45	0.27^{**}	0.40***
		(0.11)	(0.15)		(0.11)	(0.15)
Warp thread packedness	3.05	0.87***	1.28^{***}	3.20	0.39***	0.58***
		(0.14)	(0.17)		(0.12)	(0.16)
R-squared		0.21	0.34		0.11	0.14
Observations		1,680	1,680		1,667	1,667

TABLE XI QUALITY AND PRODUCTIVITY ON IDENTICAL-SPECIFICATION DOMESTIC RUGS (STEP 2)

	Control mean	(1) ITT	(2) TOT
Time (in minutes)	247.0	-5.67	-8.3
		(6.6)	(9.5)
R-squared		0.84	0.84
Observations		748	748

 \blacktriangleright Alfaro-Ureña et al. (2022): selling to MNCs \rightarrow upgrading.

- ▶ Alfaro-Ureña et al. (2022): selling to MNCs \rightarrow upgrading.
- Firm-to-firm data from tax systems opens new analytical possibilities.
- Matching design: compare suppliers to MNCs vs. suppliers to other types of firms.

- ▶ Alfaro-Ureña et al. (2022): selling to MNCs \rightarrow upgrading.
- Firm-to-firm data from tax systems opens new analytical possibilities.
- Matching design: compare suppliers to MNCs vs. suppliers to other types of firms.

(F) Domestic Exporter, Corp Sales to Others

- Sales, employment, TFP of new MNC suppliers [↑].
- Other buyers of new MNC suppliers:
 - Larger.
 - Higher export/import shares.
 - Longer relationships with suppliers.
- Suppliers appear to learn from (and gain reputation from) MNCs.
- Qualitative evidence of changes in business practices to appeal to MNCs.

▶ Demir, Fieler, Xu and Yang (2024):

Firm-to-firm data in Turkey.

Demir, Fieler, Xu and Yang (2024):

- Firm-to-firm data in Turkey.
- Exports to rich countries $\uparrow \Rightarrow$ own wages \uparrow

 \Rightarrow wages of suppliers \uparrow .

Demir, Fieler, Xu and Yang (2024):

- Firm-to-firm data in Turkey.
- Exports to rich countries $\uparrow \Rightarrow$ own wages \uparrow

 \Rightarrow wages of suppliers \uparrow .

> 2nd-order demand-pull effects through supply chain.

▶ Demir, Fieler, Xu and Yang (2024):

- Firm-to-firm data in Turkey.
- Exports to rich countries $\uparrow \Rightarrow$ own wages \uparrow

```
\Rightarrow wages of suppliers \uparrow.
```

> 2nd-order demand-pull effects through supply chain.

Some open questions:

- ▶ Demir, Fieler, Xu and Yang (2024):
 - Firm-to-firm data in Turkey.
 - Exports to rich countries $\uparrow \Rightarrow$ own wages \uparrow

```
\Rightarrow wages of suppliers \uparrow.
```

- > 2nd-order demand-pull effects through supply chain.
- Some open questions:
 - Are learning effects especially strong at high-quality ends of industries? If so, why?

- ▶ Demir, Fieler, Xu and Yang (2024):
 - Firm-to-firm data in Turkey.
 - Exports to rich countries $\uparrow \Rightarrow$ own wages \uparrow

```
\Rightarrow wages of suppliers \uparrow.
```

- > 2nd-order demand-pull effects through supply chain.
- Some open questions:
 - Are learning effects especially strong at high-quality ends of industries? If so, why?
 - Are technologies used to produce higher-quality goods particularly inappropriate for developing-country factor proportions?

 Another area where progress has been made is how contractual frictions inhibit upgrading.

- Another area where progress has been made is how contractual frictions inhibit upgrading.
- ► Atkin et al. (2017): misalignment of incentives within firms can impede information flows, and hence learning.

- Another area where progress has been made is how contractual frictions inhibit upgrading.
- ► Atkin et al. (2017): misalignment of incentives within firms can impede information flows, and hence learning.

- Fig. 7. Maximum density double-lattice packing with regular pentagons.
- ▶ 1st experiment: technology drop led to puzzlingly little adoption.
 - Firms cited worker resistance as key barrier.

- Another area where progress has been made is how contractual frictions inhibit upgrading.
- ► Atkin et al. (2017): misalignment of incentives within firms can impede information flows, and hence learning.

Fig. 7. Maximum density double-lattice packing with regular pentagons.

- ▶ 1st experiment: technology drop led to puzzlingly little adoption.
 - Firms cited worker resistance as key barrier.
- 2nd experiment: incentives to workers to share information increased adoption.

- Another area where progress has been made is how contractual frictions inhibit upgrading.
- ► Atkin et al. (2017): misalignment of incentives within firms can impede information flows, and hence learning.

Fig. 7. Maximum density double-lattice packing with regular pentagons.

- ▶ 1st experiment: technology drop led to puzzlingly little adoption.
 - Firms cited worker resistance as key barrier.
- 2nd experiment: incentives to workers to share information increased adoption.
- Piece rates may have been optimal in static technological environment, but discouraged sharing of information about new dies.

- Hansman et al. (2020): firms vertically integrate to solve sourcing problem in Peruvian fishmeal.
- Use quotas in main competitors (Denmark, Iceland, Chile) as source of variation in demand for (observed) quality.

- Hansman et al. (2020): firms vertically integrate to solve sourcing problem in Peruvian fishmeal.
- Use quotas in main competitors (Denmark, Iceland, Chile) as source of variation in demand for (observed) quality.
- Positive effect on vertical integration: plants buy boats.

 Hansman et al. (2020): firms vertically integrate to solve sourcing problem in Peruvian fishmeal.

- Use quotas in main competitors (Denmark, Iceland, Chile) as source of variation in demand for (observed) quality.
- Positive effect on vertical integration: plants buy boats.

• Integrated boats stay closer to port \Rightarrow fresher fish.

Hansman et al. (2020): firms vertically integrate to solve sourcing problem in Peruvian fishmeal.

- Use quotas in main competitors (Denmark, Iceland, Chile) as source of variation in demand for (observed) quality.
- Positive effect on vertical integration: plants buy boats.

- Integrated boats stay closer to port \Rightarrow fresher fish.
- The fact that firms buy boats suggests that assuring quality is a key problem for non-integrated firms.

Some promising research areas:

- Some promising research areas:
 - How repeated interactions/relational contracts interact with market structure.
 - Macchiavello and Morjaria (2021).

Some promising research areas:

- How repeated interactions/relational contracts interact with market structure.
 - Macchiavello and Morjaria (2021).
- ▶ Role of technology in reducing within-firm information asymmetries.
 - ▶ Kelley et al. (2023), de Rochambeau (2021).

Some promising research areas:

- How repeated interactions/relational contracts interact with market structure.
 - Macchiavello and Morjaria (2021).
- ▶ Role of technology in reducing within-firm information asymmetries.
 - ▶ Kelley et al. (2023), de Rochambeau (2021).
- Other types of incentive misalignment within firms.
 - ▶ Rigol and Roth (2023).

- ▶ The literature on management practices, following Bloom and Van Reenen (2007) and Bloom et al. (2013), has been very influential.
 - Now common to attribute low productivity and low growth in developing countries to "bad management."

- ▶ The literature on management practices, following Bloom and Van Reenen (2007) and Bloom et al. (2013), has been very influential.
 - Now common to attribute low productivity and low growth in developing countries to "bad management."
- ▶ It's important, but in my view its lessons have been misinterpreted.

- ▶ The literature on management practices, following Bloom and Van Reenen (2007) and Bloom et al. (2013), has been very influential.
 - Now common to attribute low productivity and low growth in developing countries to "bad management."
- ▶ It's important, but in my view its lessons have been misinterpreted.
- ► My JEL review has a simple framework:
 - Firms have inherent capabilities, which must be home-grown.
 - Given their capabilities and market conditions, firms choose inputs, products, techniques, investments in learning.

- ▶ The literature on management practices, following Bloom and Van Reenen (2007) and Bloom et al. (2013), has been very influential.
 - Now common to attribute low productivity and low growth in developing countries to "bad management."
- It's important, but in my view its lessons have been misinterpreted.
- ▶ My JEL review has a simple framework:
 - Firms have inherent capabilities, which must be home-grown.
 - Given their capabilities and market conditions, firms choose inputs, products, techniques, investments in learning.
- ▶ In this framework, "management" has three distinct components:
 - 1. Entrepreneurial ability, which is part of capabilities.
 - 2. Skills of managers, which are an input.
 - Management practices, which are techniques chosen by entrepreneurs subject to constraints.

- The literature on management practices, following Bloom and Van Reenen (2007) and Bloom et al. (2013), has been very influential.
 - Now common to attribute low productivity and low growth in developing countries to "bad management."
- It's important, but in my view its lessons have been misinterpreted.
- ▶ My JEL review has a simple framework:
 - Firms have inherent capabilities, which must be home-grown.
 - Given their capabilities and market conditions, firms choose inputs, products, techniques, investments in learning.
- ▶ In this framework, "management" has three distinct components:
 - 1. Entrepreneurial ability, which is part of capabilities.
 - 2. Skills of managers, which are an input.
 - Management practices, which are techniques chosen by entrepreneurs subject to constraints.
- Management practices are not a primitive.
 - The choice of management practices is a component of the general problem of choice of techniques (Van Reenen, 2011).

- The (big!) contribution of this literature has been to improve measurement of this important set of technical choices.
 - World Management Survey (WMS) has systematically collected information on monitoring, performance targets, incentives (e.g. performance pay), operations.
 - Closed-ended questions have been added to large firm-level surveys in the U.S., Mexico, Pakistan, and other countries.
 - SME-appropriate questions in McKenzie and Woodruff (2017).

- The (big!) contribution of this literature has been to improve measurement of this important set of technical choices.
 - World Management Survey (WMS) has systematically collected information on monitoring, performance targets, incentives (e.g. performance pay), operations.
 - Closed-ended questions have been added to large firm-level surveys in the U.S., Mexico, Pakistan, and other countries.
 - ► SME-appropriate questions in McKenzie and Woodruff (2017).
- ► A great advantage of focusing on management practices is that they are applicable across a wide range of sectors and countries.
 - Enables cross-sector and cross-country comparisons.

▶ Key question: are some management practices better than others?

- ▶ Vertical view: yes, across contexts (Bloom et al., 2014).
- Horizontal/contingency/design view: it depends on context, e.g. input, output markets, firms' know-how (Woodward, 1958).

▶ Key question: are some management practices better than others?

- ▶ Vertical view: yes, across contexts (Bloom et al., 2014).
- Horizontal/contingency/design view: it depends on context, e.g. input, output markets, firms' know-how (Woodward, 1958).
- Ultimately an empirical question, not yet resolved.
 - Some practices, e.g. tracking inventories, seem clearly better (like offset pentagons).
 - ▶ Other cases, e.g. piece rates/performance pay, are less clear.

▶ Key question: are some management practices better than others?

- ▶ Vertical view: yes, across contexts (Bloom et al., 2014).
- Horizontal/contingency/design view: it depends on context, e.g. input, output markets, firms' know-how (Woodward, 1958).
- ▶ Ultimately an empirical question, not yet resolved.
 - Some practices, e.g. tracking inventories, seem clearly better (like offset pentagons).
 - ▶ Other cases, e.g. piece rates/performance pay, are less clear.
- Normally, if we see firms using different technologies, we don't assume that some are making mistakes.
 - ▶ We ask what constraints lead them to make the choices they do.
 - ▶ We should take a similar approach to management practices.
- Bloom et al. (2013): consulting increases use of "modern" practices, improves performance.
- Randomized consulting among 17 Indian textile firms.
- 1-month diagnostic (all), 4-month implementation (treatment)
- Market value of services \sim \$250k.

- Bloom et al. (2013): consulting increases use of "modern" practices, improves performance.
- Randomized consulting among 17 Indian textile firms.
- 1-month diagnostic (all), 4-month implementation (treatment)
- Market value of services ~ \$250k.

- Bloom et al. (2013): consulting increases use of "modern" practices, improves performance.
- Randomized consulting among 17 Indian textile firms.
- 1-month diagnostic (all), 4-month implementation (treatment)
- Market value of services ~ \$250k.

- Issues:
 - Exclusion restriction.
 - Timing.
 - Benefits vs. costs.
 - Interpretation:
 - Firms learned from the consultants.
 - Jury is still out on causal effect of 38 practices and whether firms were leaving money on the table.

Some promising directions:

- What are the effects of particular practices (or bundles of practices)?
 - ▶ Gosnell et al. (2020).
 - Anderson and McKenzie (2022).

Some promising directions:

- ▶ What are the effects of particular practices (or bundles of practices)?
 - ▶ Gosnell et al. (2020).
 - Anderson and McKenzie (2022).
- Are practices consistently good/bad across contexts?
 - ▶ For different input/output market conditions, firm capabilities.

Some promising directions:

- What are the effects of particular practices (or bundles of practices)?
 - ▶ Gosnell et al. (2020).
 - Anderson and McKenzie (2022).
- Are practices consistently good/bad across contexts?
 - ▶ For different input/output market conditions, firm capabilities.
- What is the most effective way to deliver training/advice?
 - ▶ Standard errors are often large, estimates often not significant (McKenzie and Woodruff, 2014), even with average effects on profits/sales of 5-10% (McKenzie, 2021).
 - Need larger samples, more precise measurement, longer-term follow-ups.

 Research programs are most successful when they are in sustained dialogue with an audience of implementers.

- Research programs are most successful when they are in sustained dialogue with an audience of implementers.
- For this emerging subfield of Firms & Development, the natural audience is makers of industrial/innovation/technology policy.

- Research programs are most successful when they are in sustained dialogue with an audience of implementers.
- For this emerging subfield of Firms & Development, the natural audience is makers of industrial/innovation/technology policy.
- ▶ Policy pendulum is swinging back toward state intervention.
 - ▶ Major new industrial policies in U.S., Europe.
 - Unabated interventionism in China.
 - ▶ WTO rules, which had constrained policy in LMICs, are now widely ignored, seem no longer to be a constraint.

- Research programs are most successful when they are in sustained dialogue with an audience of implementers.
- ► For this emerging subfield of Firms & Development, the natural audience is makers of industrial/innovation/technology policy.
- ▶ Policy pendulum is swinging back toward state intervention.
 - ▶ Major new industrial policies in U.S., Europe.
 - Unabated interventionism in China.
 - ▶ WTO rules, which had constrained policy in LMICs, are now widely ignored, seem no longer to be a constraint.
- ▶ The need for a green transition makes these issues more pressing.

- Research programs are most successful when they are in sustained dialogue with an audience of implementers.
- ► For this emerging subfield of Firms & Development, the natural audience is makers of industrial/innovation/technology policy.
- ▶ Policy pendulum is swinging back toward state intervention.
 - ▶ Major new industrial policies in U.S., Europe.
 - Unabated interventionism in China.
 - ▶ WTO rules, which had constrained policy in LMICs, are now widely ignored, seem no longer to be a constraint.
- ▶ The need for a green transition makes these issues more pressing.
- ▶ In some sense, the pendulum is swinging too quickly.
 - The literature has not matured to the point where we have rigorously evidence-based advice to give.

- Research programs are most successful when they are in sustained dialogue with an audience of implementers.
- ► For this emerging subfield of Firms & Development, the natural audience is makers of industrial/innovation/technology policy.
- Policy pendulum is swinging back toward state intervention.
 - ▶ Major new industrial policies in U.S., Europe.
 - Unabated interventionism in China.
 - ▶ WTO rules, which had constrained policy in LMICs, are now widely ignored, seem no longer to be a constraint.
- ▶ The need for a green transition makes these issues more pressing.
- ▶ In some sense, the pendulum is swinging too quickly.
 - The literature has not matured to the point where we have rigorously evidence-based advice to give.
- ▶ We need to hurry up!
 - Need lots more research on what works and doesn't work in industrial policy, broadly defined.
 - Quasi-experiments as well as experiments.

References I

- Alfaro-Ureña, Alfonso, Isabela Manelici, and Jose P. Vasquez, "The Effects of Joining Multinational Supply Chains: New Evidence from Firm-to-Firm Linkages," Quarterly Journal of Economics, 2022, 137 (3).
- Anderson, Stephen J. and David McKenzie, "Improving Business Practices and the Boundary of the Entrepreneur: A Randomized Experiment Comparing Training, Consulting, Insourcing, and Outsourcing," Journal of Political Economy, 2022, 130 (1), 157–209.
- Atkin, David, Amit K. Khandelwal, and Adam Osman, "Exporting and Firm Performance: Evidence from a Randomized Trial," <u>Quarterly</u> Journal of Economics, 2017, 132 (2), 551–615.
- _____, Azam Chaudhry, Shamyla Chaudry, Amit K. Khandelwal, and Eric Verhoogen, "Organizational Barriers to Technology Adoption: Evidence from Soccer-Ball Producers in Pakistan," Quarterly Journal of Economics, 2017, 132 (3), 1101–1164.
- Bandiera, Oriana and Imran Rasul, "Social Networks and Technology Adoption in Northern Mozambique," <u>Economic Journal</u>, 2006, <u>116</u> (514), pp. 869 – 902.
- Banerjee, Abhijit, Arun G. Chandrasekhar, Esther Duflo, and Matthew O. Jackson, "The Diffusion of Microfinance," <u>Science</u>, 2013, <u>341</u> (6144), p.363.
- Barro, Robert, "Economic Growth in a Cross-Section of Countries," Quarterly Journal of Economics, 1991, 106 (2), 407-444.
- Bastos, Paulo, Joana Silva, and Eric Verhoogen, "Export Destinations and Input Prices: Evidence from Portugal," <u>American Economic</u> Review, 2018, 108 (2), 353–392.
- Beaman, Lori, Ariel BenYishay, Jeremy Magruder, and Ahmed Mushfiq Mobarak, "Can Network Theory-Based Targeting Increase Technology Adoption?," American Economic Review, June 2021, 111 (6), 1918–43.
- BenYishay, Ariel and A. Mushfiq Mobarak, "Social Learning and Incentives for Experimentation and Communication," <u>Review of</u> Economic Studies, 2019, 86 (3), 976–1009.
- Bloom, Nicholas and John Van Reenen, "Measuring and Explaining Management Practices Across Firms and Countries," <u>Quarterly</u> Journal of Economics, 2007, <u>122</u> (4), 1351–1408.
- _____, Benn Eifert, Aprajit Mahajan, David McKenzie, and John Roberts, "Does Management Matter? Evidence from India," <u>Quarterly</u> Journal of Economics, February 2013, <u>128</u> (1), 1–51.
- _____, Renata Lemos, Raffaella Sadun, Daniela Scur, and John Van Reenen, "The New Empirical Economics of Management," <u>Journal of the European Economic Association</u>, 2014, <u>12</u> (4), 835–876.

References II

Brambilla, Irene, Daniel Lederman, and Guido Porto, "Exports, Export Destinations and Skills," <u>American Economic Review</u>, 2012, <u>102</u> (7), 3406–3488.

Burenstam Linder, Staffan, An Essay on Trade and Transformation, New York NY: Wiley & Sons, 1961.

- Cai, Jing and Adam Szeidl, "Interfirm Relationships and Business Performance," <u>Quarterly Journal of Economics</u>, 2018, <u>133</u> (3), 1229–1282.
- Comin, Diego, Danial Lashkari, and Martí Mestieri, "Structural Change with Long-Run Income and Price Effects," Econometrica, 2021, 89 (1), 311–374.
- Conley, Timothy and Christopher Udry, "Learning about a New Technology: Pineapple in Ghana," <u>American Economic Review</u>, 2010, <u>100</u> (1), pp. 35–69.
- de Rochambeau, Golvine, "Monitoring and Intrinsic Motivation: Evidence from Liberia's Trucking Firms," 2021. Unpub. paper, Sciences Po.
- Demir, Banu, Ana Cecilia Fieler, Daniel Yi Xu, and Kelly Kaili Yang, "O-Ring Production Networks," Journal of Political Economy, 2024, 132 (1), 000–000.
- Duflo, Esther and Emmanuel Saez, "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," Quarterly Journal of Economics, 2003, 118 (3), pp. 815–842.
- Fafchamps, Marcel and Simon Quinn, "Networks and Manufacturing Firms in Africa: Results from a Randomized Field Experiment," World Bank Economic Review, 10 2018, 32 (3), 656-675.
- Gosnell, Greer K., John A. List, and Robert D. Metcalfe, "The Impact of Management Practices on Employee Productivity: A Field Experiment with Airline Captains," Journal of Political Economy, 2020, 128 (4), 1195–1233.
- Hall, Robert and Charles Jones, "Why Do Some Countries Produce So Much More Per Worker than Others?," <u>Quarterly Journal of</u> Economics, February 1999.
- Hallak, Juan Carlos, "Product Quality and the Direction of Trade," Journal of International Economics, 2006, 68, 238-265.
- Hansman, Christopher, Jonas Hjort, Gianmarco León-Ciliotta, and Matthieu Teachout, "Vertical Integration, Supplier Behavior, and Quality Upgrading among Exporters," <u>Journal of Political Economy</u>, 2020, <u>128</u> (9), 3570–3625.

References III

- Hardy, Morgan and Jamie McCasland, "It Takes Two: Experimental Evidence on the Determinants of Technology Diffusion," <u>Journal of</u> Development Economics, 2021, 149, 102600.
- Hausmann, Ricardo and Dani Rodrik, "Economic Development as Self-Discovery," <u>Journal of Development Economics</u>, Special Issue Dec. 2003 2003, 72 (2), 603–633.
- Hirschman, Albert O., The Strategy of Economic Development, New Haven: Yale, 1958.
- Hummels, David and Peter J. Klenow, "The Variety and Quality of a Nation's Exports," <u>American Economic Review</u>, 2005, <u>95</u> (3), 704–723.
- Kelley, Erin M., Gregory Lane, and David Schönholzer, "Monitoring in Small Firms: Experimental Evidence from Kenyan Public Transit," 2023. Unpub. paper.
- Krugman, Paul, "The Narrow Moving Band, the Dutch Disease, and the Competitive Consequences of Mrs. Thatcher: Notes on Trade in the Presence of Dynamic Scale Economies," Journal of Development Economics, 1987, 27 (1-2), 41–55.

Lucas, Robert, "On the Mechanics of Economic Development," Journal of Monetary Economics, 1988, 22, 3-42.

- Macchiavello, Rocco and Ameet Morjaria, "Competition and Relational Contracts in the Rwanda Coffee Chain," <u>Quarterly Journal of</u> Economics, 2021, 136 (2), 1089–1143.
- Manski, Charles F., "Identification of Endogenous Social Effects: The Reflection Problem," <u>Review of Economic Studies</u>, July 1993, <u>60</u> (3), 531–42.
- Matsuyama, Kiminori, "Engel's Law in the Global Economy: Demand-Induced Patterns of Structural Change, Innovation, and Trade," Econometrica, 2019, 87 (2), 497–528.
- McKenzie, David, "Small Business Training to Improve Management Practices in Developing Countries: Re-assessing the Evidence for 'Training Doesn't Work'," Oxford Review of Economic Policy, 2021, 37 (2), 276–301.
- _____ and Christopher Woodruff, "What Are We Learning from Business Training and Entrepreneurship Evaluations around the Developing World?," World Bank Research Observer, 2014, 29 (1), 48–82.
- _____ and ____, "Business Practices in Small Firms in Developing Countries," Management Science, 2017, 63 (9), 2967–2981.
- Murphy, Kevin, Andrei Shleifer, and Robert Vishny, "Industrialization and the Big Push," Journal of Political Economy, 1989, 97, 1003–1026.

References IV

Myrdal, Gunnar, Economic Theory and Underdeveloped Regions, London: Duckworth, 1957.

Nagin, Daniel S., James B. Rebitzer, Seth Sanders, and Lowell J. Taylor, "Monitoring, Motivation, and Management: The Determinants of Opportunistic Behavior in a Field Experiment," American Economic Review, 2002, 92 (4), 850–873.

Nurkse, Ragnar, Problems of Capital Formation in Underdeveloped Countries, New York: Oxford University Press, 1953.

- Prebisch, Raul, "The Economic Development of Latin America and its Principal Problems," 1950. New York: United Nations, Reprinted in Economic Bulletin for Latin America in 1962.
- Rigol, Natalia and Benjamin N. Roth, "Loan Officers Impede Graduation from Microfinance: Strategic Disclosure in a Large Microfinance Institution," 2023. Unpub. paper.

Rodriguez-Clare, Andres, "The Division of Labor and Economic Development," Journal of Development Economics, April 1996, 49, 3-32.

Rodrik, Dani, "Industrial Policy for the 21st Century," 2004. Unpub paper, Harvard University.

Romer, Paul, "Increasing Returns and Long-Run Growth," Journal of Political Economy, 1986, 94 (5), 1002-10037.

Rosenstein-Rodan, P. N., "Problems of Industrialization of Eastern and South-Eastern Europe," Economic Journal, 1943, 53, 202-211.

Rostow, W.W., The Stages of Economic Growth: A Non-Communist Manifesto, Cambridge, UK: Cambridge University Press, 1960.

- Schott, Peter, "Across-Product versus Within-Product Specialization in International Trade," Quarterly Journal of Economics, May 2004, 119 (2), 647–678.
- Stiglitz, Joseph E. and Bruce C. Greenwald, <u>Creating a Learning Society: A New Approach to Growth</u>, Development, and Social Progress, Columbia University Press, 2014.
- Van Reenen, John, "Does Competition Raise Productivity Through Improving Management Quality?," <u>International Journal of Industrial</u> <u>Organization</u>, 2011, <u>29</u> (3), 306–316.
- Verhoogen, Eric, "Trade, Quality Upgrading, and Wage Inequality in the Mexican Manufacturing Sector," <u>Quarterly Journal of Economics</u>, 2008, 123 (2), 489–530.

_____, "Firm-Level Upgrading in Developing Countries," Journal of Economic Literature, 2023, 61 (4), 1410–1464.

Woodward, Joan, Management and Technology, H.M. Stationery Office, 1958.